

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Application of Isotopic Labelling to the Infrared Spectra of the Linkage Isomers Pyridine(isothiocyanato)cobaloxime and Pyridine(thiocyanato)cobaloxime

Phillip E. Rutherford^a, David A. Thornton^a

^a Department of Inorganic Chemistry, University of Cape Town, Rondebosch, South Africa

To cite this Article Rutherford, Phillip E. and Thornton, David A.(1980) 'Application of Isotopic Labelling to the Infrared Spectra of the Linkage Isomers Pyridine(isothiocyanato)cobaloxime and Pyridine(thiocyanato)cobaloxime', *Spectroscopy Letters*, 13: 6, 427 — 432

To link to this Article: DOI: 10.1080/00387018008064034

URL: <http://dx.doi.org/10.1080/00387018008064034>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

APPLICATION OF ISOTOPIC LABELLING TO THE INFRARED SPECTRA OF
THE LINKAGE ISOMERS PYRIDINE(ISO THIOCYANATO)COBALOXIME AND
PYRIDINE(THIOCYANATO)COBALOXIME

Phillip E. Rutherford and David A. Thornton

Department of Inorganic Chemistry,
University of Cape Town, Rondebosch 7700, South Africa.

ABSTRACT

The infrared spectra of the isomeric complexes $[\text{Co}(\text{DH})_2(\text{py})(\text{NCS})]$ and $[\text{Co}(\text{DH})_2(\text{py})(\text{SCN})]$ (DH = dimethylglyoximate anion, py = pyridine) and their $\text{py}^{15\text{N}}$ -, $\text{py}-d_5$ - and ^{15}NCS -labelled derivatives have been determined. Band assignments are based on the shifts incurred by labelling and on previous labelling studies applied to the complexes $[\text{Co}(\text{DH})_2(\text{py})\text{X}]$ ($\text{X} = \text{CH}_3, \text{Cl}, \text{Br}, \text{I}$). $\nu_{\text{Co}-\text{N}(\text{py})}$ occurs at 464 cm^{-1} in both complexes with an additional band at 450 cm^{-1} in the isothiocyanate complex, while $\nu_{\text{Co}-\text{N}(\text{DH})}$ appears at 513 cm^{-1} in both complexes. $\nu_{\text{Co}-\text{NCS}}$ occurs at 377 cm^{-1} in the isothiocyanate complex while $\nu_{\text{Co}-\text{SCN}}$ appears at 356 cm^{-1} in the thiocyanate complex.

INTRODUCTION

Both N- and S-bonded forms of the complex $[\text{Co}(\text{DH})_2(\text{py})(\text{CNS})]$ may be isolated in the solid state¹. Existence of the two linkage

isomers has been confirmed by consideration of the integrated intensities of the C-N band which yielded values of $10.24 \times 10^4 \text{ M}^{-1}\text{cm}^{-2}$ for the N-bonded and $1.2 \times 10^4 \text{ M}^{-1}\text{cm}^{-2}$ for the S-bonded forms^{1,2}. These compounds are of interest in being the first reported examples of isothiocyanate-thiocyanate linkage isomers involving cobalt(III). We now report a study of their infrared spectra over the range 4000 - 150 cm^{-1} .

EXPERIMENTAL

The compounds were prepared by the reported methods¹. The py-¹⁵N- and ¹⁵NCS-labelled analogues were similarly prepared from pyridine-¹⁵N of 95% isotopic purity and NaSC¹⁵N of 97% isotopic purity supplied by Merck, Sharp and Dohme (Canada) Ltd., while the py-*d*₅-labelled analogue was obtained from pyridine-*d*₅ of 99% isotopic purity supplied by BOC Prochem Ltd. Spectra were determined on nujol mulls between caesium iodide plates (or, below 250 cm^{-1} , on nujol mulls between polyethylene plates) on Beckman IR-12 and Perkin-Elmer 180 spectrophotometers.

RESULTS AND DISCUSSION

The frequencies and isotopically-induced shifts are reported in Table 1. In a previous paper⁴, we reported the application of ¹⁵N-labelling to the assignment of infrared bands in the complexes $[\text{Co}(\text{DH})_2(\text{py})\text{X}]$ ($\text{X} = \text{CH}_3, \text{Cl}, \text{Br}, \text{I}$). Similar techniques are employed here except that ¹⁵N-labelling of the dimethylglyoximate anion has been omitted, assignment of the internal vibrations of this moiety now being made by direct comparison with the earlier work. In the present work,

TABLE 1

Vibrational frequencies (cm^{-1}), isotopic shifts ($\Delta\nu$, cm^{-1} , in the sequence ^{15}NCS , $\text{py-}^{15}\text{N}$, $\text{py-}d_5$) and band assignments for the linkage isomers $[\text{Co}(\text{DH})_2(\text{py})(\text{NCS})]$ and $[\text{Co}(\text{DH})_2(\text{py})(\text{SCN})]$ ^a

[Co(DH) ₂ (py)(NCS)]			[Co(DH) ₂ (py)(SCN)]			py	Assignment ^b
$\bar{\nu}$	$\Delta\nu$		$\bar{\nu}$	$\Delta\nu$		$\bar{\nu}$	$\Delta\nu$
2122	30,0,0		2112	29,0,0			$\nu\text{N=CS}$
			2028	26,0,0			$\nu\text{N-CS}$
1606	0,2,39		1606	0,0,48	1606	58	ν ring(py) (6a)
					1590	54	ν ring(py) (8a)
					1581		ν ring(py) (8a)
1564	0,0,0	1556	0,0,0				$\nu\text{C=N(DH)}$
1495	0,3,173	1492	0,2,169	1481	162		ν ring(py) (19a)
1449	0,5,127	1449	0,6,126	1436	138		ν ring(py) + $\nu\text{C=N(DH)}$ (19b)
1370	0,0,0/44 ^c	1370	0,0,1/47 ^c	1374	147		ν ring(py) + δCH_3 (14)
				1291	251		$\delta\text{C-H(py)}$
1273	0,0,0						$\nu\text{C-CH}_3(\text{DH})$
1242	0,0,0	1238	0,0,1				$\nu\text{C-C(DH)} + \nu\text{N-O(DH)}$
1231	0,0,134	1224	1,2,127	1215	208		$\delta\text{C-H(py)}$ (3,9a)
			1156	3,0,329	1145	183	$\delta\text{C-H(py)}$ (15)
1094	0,0,0	1093	0,1,0				$\nu\text{N-O(DH)}$
1070	0,4,160	1067	0,4,167	1067	182		$\delta\text{C-H(py)}$ (18b)
1052	0,2,5	1049	1,5,3	1029	197		ν ring(py) (12)
1019	0,11,15	1025	1,10,19	990	168		ν ring(py) (1)
982	0,0,1	979	0,0,1				$\nu\text{N-O(DH)}$
		957	0,0,173	940	34		
				882	193		$\gamma\text{C-H(py)}$ (10b)
833	11,0,0			818			$\nu\text{NC-S}$
761	0,4,143	766	0,4,139	748	168		$\gamma\text{C-H(py)}$ (11)
~735	tb,tb,tb	~735	tb,tb,tb				ske1. def. (DH)
694	0,2,155	694	0,2,157	702	168		$\gamma\text{C-H(py)}$ (4)
651	0,8,13	649	0,5,11	675			δ ring(py) (6a)
645	0,2,22			653	29		δ ring(py) (6a)
				602	72		δ ring(py) (6a)
513	0,0,0	513	0,0,0				$\nu\text{Co-N(DH)}$
481	0,1,4	464	0,0,0				δNCS
464	3,0,26	464	0,0,19				$\nu\text{Co-N(py)}$
456	sh,0,1	424	0,0,0				δNCS
450	0,3,12						$\nu\text{Co-N(py)}$
423	0,0,22	424	0,0,21	404	37		γ ring(py) (16b)
397	0,0,-						
377	0,0,0		356	0,0,1			$\nu\text{Co-NCS}$
							$\nu\text{Co-SCN}$
292	1,1,0	309	0,sh,0				$\tau\text{CH}_3(\text{DH})$
~260	2,0,2	~250	tb,tb,tb				$\tau\text{CH}_3(\text{DH})$
217	0,0,5	232	0,0,12				$\delta\text{L-Co-L}$
195	1,0,0						$\delta\text{L-Co-L}$
169	0,0,3	168	0,0,2				$\delta\text{L-Co-L}$

^a - All shifts cited are to lower wavenumber. Abbreviations: sh - shoulder (shift masked by adjacent band), tb - band too broad and/or weak for shift to be determined.

^b - Figures in parentheses following assignments of pyridine vibrations are the band numbers in the notation of Kline and Turkevich³.

^c - Extra band observed in the spectrum of py-*d*₅ complex.

^{15}N -labelling of the NCS groups has been adopted in order to assist with the assignment of the internal NCS and metal-isothiocyanate (or thiocyanate) modes. However, ^{15}NCS -labelling does not always induce significant shifts in metal-ligand vibrations⁵. Three reasons may be advanced for the small shifts observed. Firstly, the small increase in mass relative to the unlabelled isothiocyanate yields⁶ an unfavourable reduced mass ratio μ/μ' . Secondly, where M-SCN bonding occurs, the labelled nitrogen atom is too far removed from the coordination site. Thirdly, vibrational coupling may serve to attenuate the mass effect. Thus, empirical methods are relied upon considerably in assigning the M-NCS modes.

Ligand vibrations associated with the isothiocyanate and thiocyanate groups

The spectrum of NaSCN yields four bands within the range 4000 - 150 cm^{-1} . Each of these bands exhibits significant ^{15}NCS -sensitivity. The band at 2074 cm^{-1} , assigned to $\nu N\text{-CS}$ appears as a relatively broad band in the spectrum of the isothiocyanate complex and exhibits a large ^{15}NCS -induced shift (30 cm^{-1}). In the thiocyanate complex, $\nu N\text{-CS}$ is split into two bands at 2112 and 2028 cm^{-1} , also with large ^{15}NCS -sensitivities. The $\nu NC\text{-S}$ band occurs at 757 cm^{-1} in the spectrum of NaSCN and at 747 cm^{-1} in the spectrum of NaSC ^{15}N . In the isothiocyanate complex it appears at 833 cm^{-1} (characteristic of M-NCS coordination). It is apparently absent from the spectrum of the thiocyanate complex, where it is probably obscured by the broad skeletal deformation of the dimethylglyoximate ion around 735 cm^{-1} . (It is expected⁷ to occur somewhere near 700 cm^{-1} . The bending mode, δNCS , occurring at 481 cm^{-1} in the spectrum of NaSCN, is split into two bands in the spectra of the complexes. Although they show no ^{15}NCS -shift, they are assigned to δNCS by comparison with the spectra of $[\text{Co}(\text{DH})_2(\text{py})\text{X}]$.

The overtone of the δ NCS mode (at 960 cm^{-1} in the NaSCN spectrum) is absent from the spectra of the complexes. A similar phenomenon was noted in the spectra of *bis*(aniline)metal(II) isothiocyanate complexes⁵.

Skeletal vibrations of the chelated dimethylglyoximate anion

All assignments were based on comparison with the spectra of the complexes $[\text{Co}(\text{DH})_2(\text{py})\text{X}]$ where they were firmly based on ^{15}N -labelling of the dimethylglyoximate nitrogen atoms⁴. There is generally a band-for-band correspondence between the DH-vibrations of the two linkage isomers and usually they appear at similar frequencies. One exception, the band at 1273 cm^{-1} , which is unique to the spectrum of the isothiocyanate complex, is assigned to $\nu\text{C-C}$ of dimethylglyoxime. The bands near 1240 cm^{-1} , assigned by Norbury and Sinha¹ to a pyridine ring vibration are shown here by their insensitivity to $\text{py-}^{15}\text{N}$ - and $\text{py-}d_5$ -labelling, to be due to $\nu\text{C-C}$ of the dimethylglyoximate anion.

Metal-ligand vibrations

The metal-ligand stretching modes $\nu\text{Co-N(DH)}$ and $\nu\text{Co-N(py)}$, being relatively insensitive to variation of the axial ligand, are expected to occur at frequencies similar to those in $[\text{Co}(\text{DH})_2(\text{py})\text{X}]$. The strong band at 513 cm^{-1} is confirmed as $\nu\text{Co-N(DH)}$ by its lack of sensitivity towards pyridine or isothiocyanate labelling. In the isothiocyanate complex, the split band near 460 cm^{-1} is assigned to $\nu\text{Co-N(py)}$. Both components are sensitive to labelling of pyridine. In the thiocyanate complex, $\nu\text{Co-N(py)}$ occurs at 464 cm^{-1} as a single band masking a δ NCS band. It is sensitive to both $^{15}\text{N}(\text{py})$ - and $\text{py-}d_5$ -labelling whereupon it shifts to lower frequency, revealing the δ NCS band which remains insensitive to labelling. As expected, $\nu\text{Co-NCS}$ is considerably

sensitive to the mode of thiocyanate coordination. The bands occurring at 377 cm^{-1} in the spectrum of the isothiocyanate complex and at 356 cm^{-1} in the spectrum of the thiocyanate complex, are assigned to $\nu\text{Co-NCS}$ and $\nu\text{Co-SCN}$, respectively. Although neither of these bands exhibits sensitivity to ^{15}NCS -labelling, they are the only vibrations sufficiently sensitive to change of the bonding mode in the isomers, to be so assigned. Furthermore, they occur in the same region of the spectrum as $\nu\text{Co-X}$ in $[\text{Co}(\text{DH})_2(\text{py})\text{X}]$.⁴

ACKNOWLEDGEMENTS

We thank the University Research Committee and the South African Council for Scientific and Industrial Research for financial assistance.

REFERENCES

1. A.H. Norbury and A.I.P. Sinha, *Inorg. Nucl. Chem. Lett.*, **4**, 617 (1968).
2. A.H. Norbury and S. Raghunathan, *J. Inorg. Nucl. Chem.*, **37**, 2133 (1975).
3. C.H. Kline and J. Turkevich, *J. Chem. Phys.*, **12**, 300 (1944).
4. P.E. Rutherford and D.A. Thornton, *Spectrochim. Acta*, **35A**, 711 (1979).
5. C. Engelter and D.A. Thornton, *J. Mol. Struct.*, **33**, 119 (1976).
6. S. Pinchas and I. Laulicht, *Infrared Spectra of Labelled Compounds*, Academic Press, New York, 1971, p. 26.
7. C. Pecile, *Inorg. Chem.*, **5**, 211 (1966).

Received: March 21, 1980

Accepted: April 16, 1980